

Current Transducer LA 25-NP/SP9

For the electronic measurement of currents: DC, AC, pulsed..., with galvanic isolation between the primary circuit and the secondary circuit.

 $I_{PN} = 1.5 A$

a atria a	4040
ectrical	Orte

I _{PN}	Primary nominal curre	nt rms	1.5		Α
I _{PM}	Primary current, meas	uring range	0 ± 2	2.2	Α
R _M	Measuring resistance		$\mathbf{R}_{M\;min}$	$\mathbf{R}_{M\;max}$	
	with ± 15 V	$@ \pm 1.5 A_{max}$	100	320	Ω
		@ $\pm 2.2 A_{max}$	100	190	Ω
I _{SN}	Secondary nominal cu		24		mΑ
K _N	Conversion ratio		16 : 10	000	
$\mathbf{V}_{\mathtt{C}}$	Supply voltage (± 5 %))	± 15		V
I c	Current consumption		10 + I ,	S	mA

Accuracy - Dynamic performance data

X	Accuracy @ I _{PN} , T _A = 25°C		± 0.5		%
$\mathbf{E}_{\scriptscriptstyle L}$	Linearity error		< 0.2		%
_			Тур	Max	
I_{\circ}	Offset current ¹⁾ @ $I_P = 0$, $T_A = 25$ °C		± 0.05	± 0.15	mΑ
I _{OM}	Magnetic offset current $^{2)}$ @ $I_p = 0$ and s	pecified R _M ,			
	after an overloa	d of 3 x I _{PN}	± 0.05	± 0.15	mΑ
I _{OT}	Temperature variation of I ₀ 0°0	C + 25°C	± 0.06	± 0.25	mΑ
	+ 25°0	C + 70°C	± 0.10	± 0.35	mΑ
t,	Response time 3) to 90 % of I _{PN} step		< 1		μs
di/dt	di/dt accurately followed		> 50		A/µs
BW	Frequency bandwidth (- 1 dB)		DC 1	50	kHz

General data

T_A	Ambient operating temperature		0 + 70	°C
T _s	Ambient storage temperature		- 25 + 85	°C
\mathbf{R}_{P}^{T}	Primary coil resistance	@ $T_A = 25^{\circ}C$	< 22.4	$m\Omega$
\mathbf{R}_{s}	Secondary coil resistance	@ $T_A = 70^{\circ}C$	110	Ω
L _P	Insertion inductance		13.5	μΗ
R _{IS}	Isolation resistance @ 500 V, T	_A = 25°C	> 1500	$M\Omega$
m	Mass		22	g
	Standard		EN 50178	

Notes: 1) Measurement carried out after 15 mn functioning

- 2) The result of the coercive field of the magnetic circuit
- 3) With a di/dt of 100 A/µs.

Features

- Closed loop (compensated) current transducer using the Hall effect
- Isolated plastic case recognized according to UL 94-V0.

Special features

- I_{PN} = 1.5 A
- I_{PM} = 0 .. ± 2.2 A
- $\mathbf{K}_{N} = 16 : 1000.$

Advantages

- Excellent accuracy
- · Very good linearity
- Low temperature drift
- · Optimized response time
- · Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- · Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Application domain

• Industrial.

Current Transducer LA 25-NP/SP9

Isolation characteristics			
V _d	Rms voltage for AC insulation test, 50 Hz, 1 min	2.5	kV
$\mathbf{\hat{V}}_{d}$	Impulse withstand voltage 1.2/50 µs	16	kV
		Min	
dCp	Creepage distance	19.5	mm
dCI	Clearance	19.5	mm
CTI	Comparative Tracking Index (group IIIa)	175	

Applications examples

According to EN 50178 and IEC 61010-1 standards and following conditions:

- Over voltage category OV 3
- Pollution degree PD2
- Non-uniform field

	EN 50178	IEC 61010-1
dCp, dCl, $\hat{\mathbf{V}}_{_{\mathrm{W}}}$	Rated insulation voltage	Nominal voltage
Basic insulation	1700 V	1700 V
Reinforced insulation	600 V	600 V

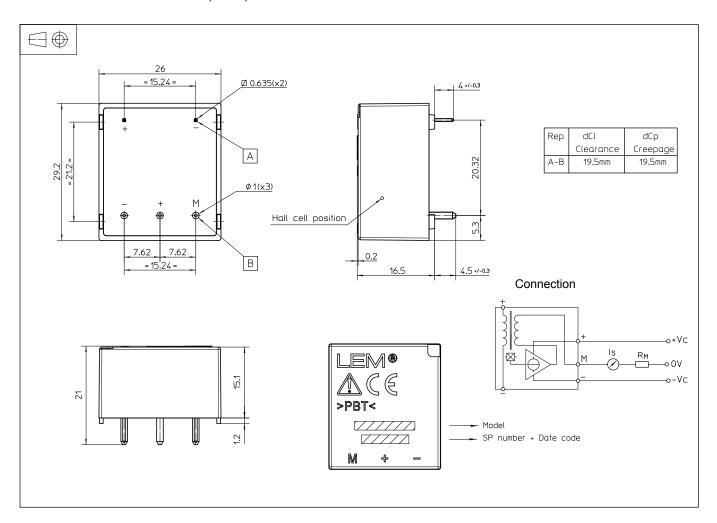
Safety

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).

Ignoring this warning can lead to injury and/or cause serious damage.


This transducer is a build-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

Dimensions LA 25-NP/SP9 (in mm)

Mechanical characteristics

General tolerance

Fastening & connection of primary

Fastening & connection of secondary

• Recommended PCB hole

± 0.2 mm

2 pins

0.635 x 0.635 mm

3 pins Ø 1 mm

1.2 mm

Remark

• I_s is positive when I_p flows from terminal + to terminal -.