

Current Transducer LA 205-S/SP1

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Current consumption

16140

Electrical data

	cott toat data						
I _{PN}	Primary nominal r.m.s. current		200			Α	
	Primary current, measuring range			0 ± 300			Α
l _P max	Measuring overload 1)		600			Α	
R _M	Measuring resistance @		$T_{A} = 70^{\circ}C \mid T_{A} = 85^{\circ}C$)		
			$\mathbf{R}_{M\;min}$	$R_{_{M\ max}}$			
	with ± 12 V	$@ \pm 200 A_{max}$	0	68	0	66	Ω
		@ $\pm 300 A_{max}$	0	33	0	30	Ω
	with ± 15 V	@ ± 200 A _{max}	5	95	5	93	Ω
		@ ± 300 A _{max}	5	50	5	49	Ω
I_{SN}	Secondary nominal r.m.s. current		100			m A	
K _N	Conversion ratio		1:2000				
V _C	Supply voltage (± 5 %)			± 12 15			V

Accuracy - Dynamic performance data

R.m.s rated voltage 2), safe separation

Overall accuracy @ I _{PN} , T _A = 25°C		± 0.8		%
Linearity error		< 0.1		%
		Тур	Max	
Offset current @ $I_p = 0$, $T_A = 25$ °C			± 0.15	m A
Residual current ³⁾ @ $I_p = 0$, after an overloa	ad of 3 x I _{PN}			mA
Thermal drift of I_0 - 10°C	+ 85°C	± 0.15	± 0.30	m A
Reaction time @ 10 % of I _{PN}		< 500		ns
Response time 4 @ 90 % of I _{PN}		< 1		μs
di/dt accurately followed		> 100		Aμs
Frequency bandwidth (- 3 dB)		DC 1	00	kHz
	Linearity error $ \begin{array}{l} \text{Offset current @ $\mathbf{I}_{\rm P}=0$, $\mathbf{T}_{\rm A}=25^{\circ}$C} \\ \text{Residual current}^{3)} @ $\mathbf{I}_{\rm P}=0$, after an overload of the standard of $\mathbf{I}_{\rm PN}$ & -10^{\circ}$C \\ \text{Reaction time @ 10 % of $\mathbf{I}_{\rm PN}$} \\ \text{Response time}^{4)} @ 90 \% \text{ of $\mathbf{I}_{\rm PN}$} \\ \text{di/dt accurately followed} \\ \end{array} $	Linearity error $ \begin{array}{l} \text{Offset current } @ \ \textbf{I}_{\text{P}} = 0, \ \textbf{T}_{\text{A}} = 25 ^{\circ} \text{C} \\ \text{Residual current}^{3)} @ \ \textbf{I}_{\text{P}} = 0, \text{ after an overload of } 3 \times \textbf{I}_{\text{PN}} \\ \text{Thermal drift of } \textbf{I}_{\text{O}} & -10 ^{\circ} \text{C} + 85 ^{\circ} \text{C} \\ \text{Reaction time } @ 10 \% \text{ of } \textbf{I}_{\text{PN}} \\ \text{Response time}^{4)} @ 90 \% \text{ of } \textbf{I}_{\text{PN}} \\ \text{di/dt accurately followed} \\ \end{array} $	Linearity error < 0.1 Offset current @ $\mathbf{I}_{P} = 0$, $\mathbf{T}_{A} = 25^{\circ}\text{C}$ Residual current $^{3)}$ @ $\mathbf{I}_{P} = 0$, after an overload of $3 \times \mathbf{I}_{PN}$ Thermal drift of \mathbf{I}_{O} $-10^{\circ}\text{C} + 85^{\circ}\text{C}$ ± 0.15 Reaction time @ 10% of \mathbf{I}_{PN} < 500 Response time $^{4)}$ @ 90% of \mathbf{I}_{PN} < 1 di/dt accurately followed	Linearity error $ < 0.1 $ Coeffset current @ $\mathbf{I}_{P} = 0$, $\mathbf{T}_{A} = 25^{\circ}\text{C}$ Residual current $^{3)}$ @ $\mathbf{I}_{P} = 0$, after an overload of $3 \times \mathbf{I}_{PN}$ ± 0.15 ± 0.50 Thermal drift of \mathbf{I}_{O} $-10^{\circ}\text{C} + 85^{\circ}\text{C}$ ± 0.15 ± 0.30 Reaction time @ 10% of \mathbf{I}_{PN} < 500 Response time $^{4)}$ @ 90% of \mathbf{I}_{PN} < 100

basic isolation

General data

T _A	Ambient operating temperature		- 10 + 85	°C
T _s	Ambient storage temperature		- 40 + 90	°C
\mathbf{R}_{s}	Secondary coil resistance @	$T_A = 70$ °C	35	Ω
		$T_A = 85^{\circ}C$	37	Ω
m	Mass		110	g
	Standards	EN 50178 : 1997		

Notes : 1) 3 mn/hour @ $V_C = \pm 15 \text{ V}$, $R_M = 5 \Omega$

- ²⁾ Pollution class nr 2. With a non insulated primary bar which fills the through-hole
- 3) The result of the coercive field of the magnetic circuit
- 4) With a di/dt of 100 A/µs.

$I_{PN} = 200 \text{ A}$

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0
- Patent pending.

Special feature

• Connection to secondary circuit on Faston 6.3 x 0.8 mm.

Advantages

 $20(@\pm15V)+I_{S} mA$

1625

3250

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

060531/3

Dimensions LA 205-S/SP1 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Transducer fastening

Fastening torque max.

- Primary through-hole
- Connection of secondary
- $\pm 0.5 \, \text{mm}$
- 2 holes \varnothing 5.5 mm
- 2 M5 steel screws
- 4 Nm or 2.95 Lb. Ft.
- 23 x 18 mm
- Faston 6.3 x 0.8 mm

Remarks

- \bullet ${\bf I}_{_{\rm S}}$ is positive when ${\bf I}_{_{\rm P}}$ flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.