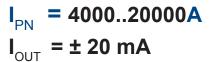


Current Transducers HAZ 4000..20000-SBI


For the electronic measurement of currents: DC, AC, pulsed, mixed, with galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

El	ectrical data						
DO	Primary nominal C current or AC peak I _{PN} (A)	Primary current measuring range I _{PM} (A)		Type			
	4000 ± 4000 6000 ± 6000 10000 ± 10000 12000 ± 12000 14000 ± 14000 20000 ± 20000		HAZ 4000-SBI HAZ 6000-SBI HAZ 10000-SBI HAZ 12000-SBI HAZ 14000-SBI HAZ 20000-SBI				
V _C I _C I _P R _{IS} I _{OUT} R _{OUT} R _L	Supply voltage (± 5 %) Current consumption Overload capability Isolation resistance @ £ Output current @ ± I _{PN} , Output internal resistan Load resistance	500 VDC T _A = 25°C	approx.	± 15 ± 50 30,000 > 1,000 ± 20 20 < 300	V mA A MΩ mA Ω		
Accuracy - Dynamic performance data							
$\begin{array}{l} \mathbf{X} \\ \boldsymbol{\epsilon}_{\text{L}} \\ \mathbf{I}_{\text{CE}} \\ \mathbf{I}_{\text{OM}} \end{array}$	Temperature coefficient Response time to 90% Response time @ 10% di/dt accurately followed Frequency bandwidth	$(9)^{1}$ $(2)^{1}$ $(2)^{1}$ $(2)^{1}$ $(2)^{1}$ $(2)^{1}$ $(2)^{1}$ $(2)^{1}$ $(2)^{1}$ $(2)^{1}$ $(3)^{1}$ $(3)^{1}$ $(4)^$	ed R _M ,	<pre><± 1 < ± 0.5 < ± 0.08 < ± 0.025 < ± 0.05 < ± 0.05 < 10 < 2 > 50 DC 3</pre>	% of I _{PN} mA ; mV % of I _{PN} /K %/K μs μs A/μs kHz		
G	eneral data						
T _A T _S	Ambient operating tempe Ambient storage tempe Housing PBT 30% glass Mass Standards ³⁾	rature	approx.	- 25 + 85 - 30 + 90 6 EN 50178 EN 50155	°C kg 3: 1997		

Features

- Hall effect measuring principle
- Galvanic isolation between primary and secondary circuit
- Isolation voltage 17kV Rms /50 Hz /1 min
- Low power consumption
- Package in PBT meeting UL 94-V0
- Instantaneous voltage output

Advantages

- Easy mounting
- Small size and space savings
- Only one design for wide current ratings range
- High immunity against external interference

Applications

- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Power supplies for welding and telecom applications.

Application domain

- Industrial
- Traction

Note: 1) Linearity data exclude the electrical offset.

²⁾ To avoid excessive core heating ³⁾ Please consult characterisation report for more technical details and application advice.

4) Regarding compliance toward IEC 61000-4-3 (EN 50121-3-2 (2006)): Output is above to 30% of Isn between 300MHz and 600MHz with a field

Current Transducer HAZ 4000..20000-SBI

Isolation characteristics					
$oldsymbol{V}_{ ext{de}} \ oldsymbol{V}_{ ext{e}} \ oldsymbol{\hat{V}}_{ ext{w}}$	Rms voltage for AC isolation test, 50 Hz, 1 min Partial discharge extinction voltage rms @ 10pC Impulse withstand voltage 1.2/50 µs	17 >3.75 32	kV kV kV		
dCp dCl CTI	Creepage distance Clearance distance Comparative Tracking Index (group I)	>45 >45 >600	mm mm		

Applications examples

According to EN 50178 and IEC 61010-1 standards and following conditions:

- Over voltage category OV 3
- Pollution degree PD2
- Non-uniform field

	EN 50178	IEC 61010-1
dCp, dCl, \hat{V}_w	Rated insulation voltage	Nominal voltage
Basic insulation	8000V	9000V
Reinforced insulation	3000V	4000V

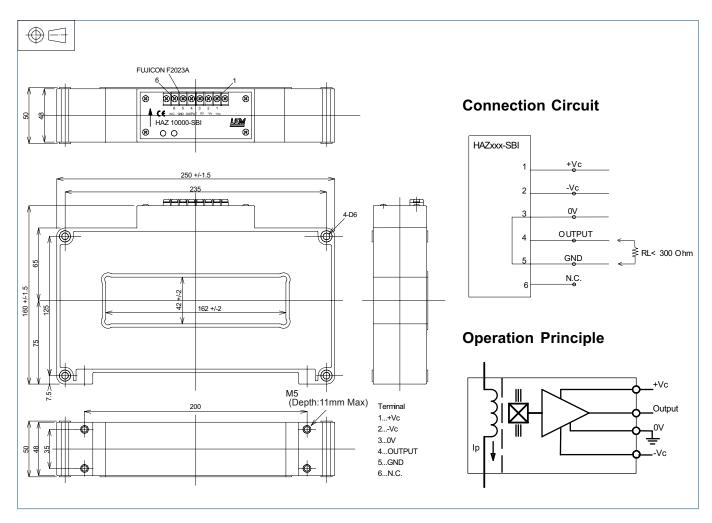
Safety

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).

Ignoring this warning can lead to injury and/or cause serious damage.


This transducer is a build-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

Dimensions HAZ 4000..20000-SBI (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

General tolerance ± 0.5 mm

Aperture for primary conductor 162 mm x 42 mm

(± 2 mm)

Transducer fastening 4 x M5

(not supplied)

Recommended fastening torque < 5 Nm

Connection of secondary
 Fujicon F2023A

(6 terminals)

Remarks

- Temperature of the primary conductor should not exceed 120°C.
- I_{OUT} is positive when I_{P} flows in the direction of the $\,$ arrow.