

AUTOMOTIVE CURRENT TRANSDUCER OPEN LOOP TECHNOLOGY HAH1DRW 500-S

Introduction

The HAH1DRW family is for the electronic measurement of DC, AC or pulsed currents in high power and low voltage automotive applications with galvanic separation between the primary circuit (high power) and the secondary circuit (electronic circuit).

The HAH1DRW family gives you the choice of having different current measuring ranges in the same housing.

Features

- Ratiometric transducer
- Open Loop transducer using the Hall effect
- · Low voltage application
- Unipolar +5 V DC power supply
- Primary current measuring range ±500 A
- Maximum RMS primary admissible current: defined by busbar to have T < +150 °C
- Operating temperature range: -40 °C < T < 125 °C
- Output voltage: full ratio-metric (in sensitivity and offset).

Advantages

- Excellent accuracy
- · Very good linearity
- · Very low thermal offset drift
- · Very low thermal sensitivity drift
- Galvanic separation
- High frequency bandwidth
- Non intrusive solution.

Automotive applications

- Electrical Power Steering
- Starter Generators
- Converters
- Battery Management
- Motor drive application.

Principle of HAH1DRW Family

The open loop transducers uses a Hall effect integrated circuit. The magnetic flux density B, contributing to the rise of the Hall voltage, is generated by the primary current I_P to be measured.

The current to be measured $I_{\rm p}$ is supplied by a current source i.e. battery or generator (Figure 1).

Within the linear region of the hysteresis cycle, B is proportional to:

$$B(I_p) = a \times I_p$$

The Hall voltage is thus expressed by:

$$V_{\rm H} = (c_{\rm H}/d) \times I_{\rm H} \times a \times I_{\rm P}$$

Except for $I_{\rm pr}$ all terms of this equation are constant. Therefore:

$$V_{\rm H} = b \times I_{\rm P}$$
 a constant
 b constant
 $c_{\rm H}$ Hall coefficient
 d thickness of the Hall plate
 $I_{\rm H}$ current across the Hall plates

The measurement signal $V_{\rm H}$ amplified to supply the user output voltage or current.

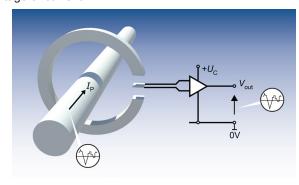
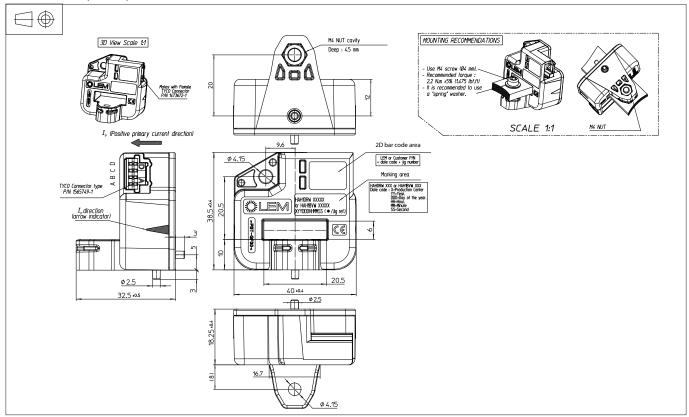



Fig. 1: Principle of the open loop transducer.

Dimensions (in mm)

Mechanical characteristics

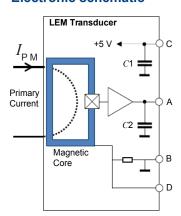
Plastic case
 PBT GF30

Magnetic core
 FeSi wound core

Mass 57 g ±5 %Pins Brass tin plated

IP level IPx2.

Mounting recommendation

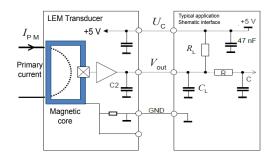

Mating connector type
 TYCO connector P/N 1473672-1

Assembly torque max
 2.2 N·m ±5 %

Soldering type
 N/A

ievei ir

Electronic schematic


	Components list							
IC	Hall sensor ASIC							
C1	Decoupling capacitor	47 nF						
C2	EMC protection capacitor	4.7 nF						

	Pin out					
Α	$V_{ m out}$					
В	GND					
С	U _c (5 V)					
D	GND					

Remark

• $V_{\text{out}} > V_{\text{o}}$ when I_{P} flows in the positive direction (see arrow on drawing).

System architecture (example)

 $C_{\rm L}$ < 2.2 nF EMC protection (optional) RC Low pass filter (optional)

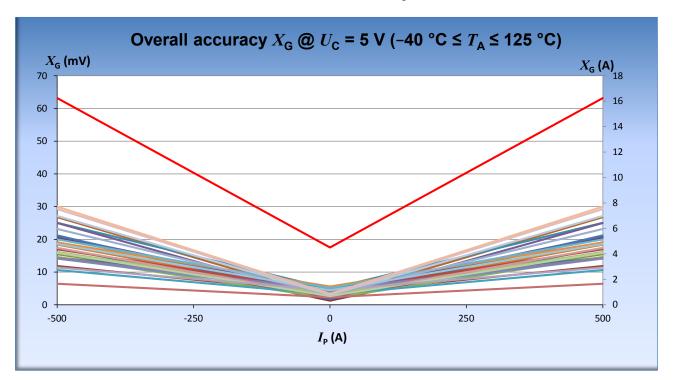
On board diagnostic

 $R_{\rm L}$ > 10 k Ω . Resistor for signal line diagnostic (optional)

V_{out}	Diagnostic
Open circuit	$V_{IN} = U_{C}$
Short GND	V _{IN} = 0 V

Absolute ratings (not operating)

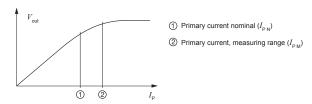
Parameter	Symbol	Unit	Specification			Conditions	
Faranieter	Syllibol		Min	Typical	Max	Conditions	
Maximum supply voltage	$U_{\rm C\; max}$	V	-0.5		8	1)	
Ambient storage temperature	T_{s}	°C	-40		125		
Electrostatic discharge voltage (HBM)	U_{ESD}	kV			8		
Maximum admissible vibration (random RMS)	γ_{max}	m·s⁻²			96.6	10 to 2000 Hz, −40 °C to 125 °C	
RMS voltage for AC insulation test	U_{d}	kV			2.5	50 Hz, 1 min	
Creepage distance	d_{Cp}	mm	4.85				
Clearance	d_{CI}	mm	4.85				
Comparative traking index	CTI		PLC3				
Maximum output current	$I_{ m out\; max}$	mA	-10		10		
Maximum output voltage	$V_{ m outmax}$	V	-0.5		U _c + 0.5		


Operating characteristics in nominal range ($I_{\rm P\,N}$)

Downwater	Cumbal	Unit	Specification			Conditions	
Parameter	Symbol		Min	Typical	Max	Conditions	
Electrical Data							
Primary current, measuring range	I_{PM}	Α	-500		500		
Primary nominal RMS current	$I_{\rm PN}$	Α	-500		500		
Supply voltage	U_{c}	V	4.75	5	5.25		
Ambient operating temperature	T_{A}	°C	-40		125		
Output voltage (Analog)	$V_{\text{out}} = V_{\text{out}} = V_{\text{out}} = V_{\text{out}} = V_{\text{out}} + V_{\text{out}} = V_{\text{out}} + V_{out} + V_{\text{out}} + V_{\text{out}} + V_{\text{out}} + V_{\text{out}} + V_{o$		$+ G \times I_{p}$)				
Sensitivity	G	mV/A		4		@ T _A = 25 °C	
Offset voltage	V_{o}	V		2.5			
Current consumption	I_{C}	mA		20	25		
Load resistance	R_{L}	ΚΩ	10				
Output internal resistance	$R_{\rm out}$	Ω		1	10		
		Perf	ormanc	e Data			
Ratiometricity error	$\varepsilon_{\rm r}$	%		±0.5			
Sensitivity error	$\varepsilon_{_G}$	%		±0.6		$\textcircled{@}\ T_{A}$ = 25 °C, $\textcircled{@}\ U_{C}$ = 5 V	
Electrical offset voltage	VoE	mV		±3		$\textcircled{@}\ T_{A}$ = 25 °C, $\textcircled{@}\ U_{C}$ = 5 V	
Magnetic offset voltage	V _{om}	mV		±2		$\textcircled{@}\ U_{\text{C}}$ = 5 V, $\textcircled{@}\ T_{\text{A}}$ = 25 °C	
Linearity error	ε_{L}	%	-1		1	% of full scale	
Average temperature coefficient of V_{OE}	TCV_{OEAV}	mV/°C		±0.04			
Average temperature coefficient of G	TCG _{AV}	%/°C		±0.02			
Step response time @ 90 %	t _r	μs		2	6	$di/dt = 100 \text{ A} / \mu \text{s}$	
Frequency bandwidth	BW	kHz	40			@ -3 dB	
Peak-to-peak noise voltage	$V_{ m no~pp}$	mV			14	DC to 1 MHz	
Output RMS voltage noise	V_{no}	mV			2.2		
Phase shift	$\Delta \varphi$	٥	-4			DC to 1 KHz	

Note: 1) Exceeding 6.5 V may temporarily reconfigure the device until next power on.

Overall accuracy $X_{\rm G}$



	Overall accuracy X_{G} specification							
I_{P} (A)	$T_{A} =$	25 °C, $U_{\rm c}$ =	5 V	-40 °C ≤ $T_{\rm A}$ ≤ 125 °C, $U_{\rm C}$ = 5 V				
-500	45 mV	11.25 A	2.25 %	65 mV	16.25 A	3.25 %		
0	13 mV	3.25 A	0.65 %	18 mV	4.50 A	0.90 %		
500	45 mV	11.25 A	2.25 %	65 mV	16.25 A	3.25 %		

PERFORMANCES PARAMETERS DEFINITIONS

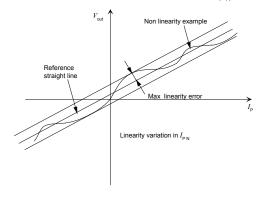
Primary current definition:

Definition of typical, minimum and maximum values:

Minimum and maximum values for specified limiting and safety conditions have to be understood as such as values shown in "typical" graphs. On the other hand, measured values are part of a statistical distribution that can be specified by an interval with upper and lower limits and a probability for measured values to lie within this interval. Unless otherwise stated (e.g. "100 % tested"), the LEM definition for such intervals designated with "min" and "max" is that the probability for values of samples to lie in this interval is 99.73 %. For a normal (Gaussian) distribution, this corresponds to an interval between -3 sigma and +3 sigma. If "typical" values are not obviously mean or average values, those values are defined to delimit intervals with a probability of 68.27 %, corresponding to an interval between -sigma and +sigma for a normal distribution. Typical, minimum and maximum values are determined during the initial characterization of a product.

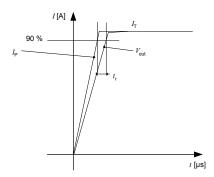
Output noise voltage:

The output voltage noise is the result of the noise floor of the Hall elements and the linear amplifier.


Magnetic offset:

The magnetic offset is the consequence of an any current on the primary side. It's defined after a stated excursion of primary current.

Linearity:


The maximum positive or negative discrepancy with a reference straight line $V_{\rm out}$ = $f(I_{\rm P})$.

Unit: linearity (%) expressed with full scale of I_{PN} .

Response time (delay time) t:

The time between the primary current signal $(I_{\rm P\ N})$ and the output signal reach at 90 % of its final value.

Sensitivity:

The transducer's sensitivity G is the slope of the straight line $V_{\text{out}} = f(I_{\text{p}})$, it must establish the relation:

$$V_{\text{out}}(I_{\text{P}}) = U_{\text{C}}/5 (G \times I_{\text{P}} + V_{\text{O}})$$

Offset with temperature:

The error of the offset in the operating temperature is the variation of the offset in the temperature considered with the initial offset at 25 $^{\circ}$ C.

The offset variation $I_{\text{O }T}$ is a maximum variation the offset in the temperature range:

$$I_{OT} = I_{OE} \max - I_{OE} \min$$

The offset drift $TCI_{\rm O~E~AV}$ is the $I_{\rm O~T}$ value divided by the temperature range.

Sensitivity with temperature:

The error of the sensitivity in the operating temperature is the relative variation of sensitivity with the temperature considered with the initial offset at 25 $^{\circ}$ C.

The sensitivity variation $G_{\rm T}$ is the maximum variation (in ppm or %) of the sensitivity in the temperature range: $G_{\rm T}$ = (Sensitivity max – Sensitivity min) / Sensitivity at 25 °C.

The sensitivity drift TCG_{AV} is the G_{T} value divided by the temperature range. Deeper and detailed info available is our LEM technical sales offices (www.lem.com).

Offset voltage @ $I_p = 0$ A:

The offset voltage is the output voltage when the primary current is zero. The ideal value of $V_{\rm O}$ is $U_{\rm C}/2$. So, the difference of $V_{\rm O}$ – $U_{\rm C}/2$ is called the total offset voltage error. This offset error can be attributed to the electrical offset (due to the resolution of the ASIC quiescent voltage trimming), the magnetic offset, the thermal drift and the thermal hysteresis. Deeper and detailed info available is our LEM technical sales offices (www.lem. com).

Environmental test specifications:

Refer to LEM GROUP test plan laboratory CO.11.11.515.0 with "Tracking_Test Plan_Auto" sheet.

Environmental test specifications:

Refer to LEM GROUP test plan laboratory CO.11.11.515.0 with "Tracking_Test Plan_Auto" sheet.

Name	Standard					
CHARACTERIZATION @ 25 °C (initial)						
Sensitivity / Accuracy / Overall accuracy	LEM 98.20.00.574.0					
Offset / Electrical Offset / Magnetic Offset	LEM 98.20.00.573.0					
Linearity error	LEM 98.20.00.370.0					
Current Consumption	LEM 98.20.00.579.0					
CHARACTERIZATION	N WITH T °C (initial)					
Sensitivity / Accuracy / Overall accuracy	LEM 98.20.00.574.0					
$T^\circ\mathrm{C}$ variation of / Temperature Coefficient of G	LEM 98.20.00.574.0					
Offset / Electrical Offset / Magnetic Offset	LEM 98.20.00.573.0					
$T^\circ\mathrm{C}$ variation of /Temperature Coefficient of Offset	LEM 98.20.00.573.0					
Linearity error	LEM 98.20.00.370.0					
Current Consumption	LEM 98.20.00.579.0					
ELECTRICAL T	ESTS @ 25 °C					
Phase delay check	100 Hz to 10 kHz @ 20 A peak					
Noise measurement	Sweep from DC to 1 MHz					
Response time di/dt	100 A/µs. / pulse = 700					
dv/dt	2000 V/μs. V = 2000 V					
Dielectric Withstand Voltage test	2500 V AC / 1 min / 50 Hz					
Insulation Resistance test	500 V DC, time = 60 s $R_{\text{INS}} \ge 500 \text{ M}\Omega$ Minimum					
ENVIRONMENTAL 1						
Thermal shock	IEC 60068-2-14 Na (01/2009)					
Steady state T °C Humidity bias life test	JESD 22-A101 (03/2009)					
MECHANIC	AL TESTS					
Vibration Random in T°C	IEC 60068-2-64 (02/2008)					
Shocks	IEC 60068-2-27 (02/2008)					
Free Fall (Device not packaged)	IEC 60068-2-31 §5.2: method 1 (05/2008)					
ЕМ	• • • • • •					
Immunity to ElectroStatic Discharges (Handling of devices)	ISO 10605 (07/2008)					
Immunity to Conducted disturbances (BCI)	ISO 11452-4 (12/2011)					
Emission Radiated (ALSE)	CISPR 25 (03/2008)					
FINAL CHARAC	CTERIZATION					
Characterization @ 25 °C						
Characterization with T °C						