Current Transducer AHR B10 For the electronic measurement of currents: DC, AC, pulsed..., with galvanic separation between the primary circuit and the secondary circuit. **Electrical data** Load resistance Supply voltage (±5 %) 1) Output voltage limitation Current consumption Primary nominal DC & AC current $I_{PN}(A)$ 500 800 1000 1500 2000 $R_{\rm L}$ $U_{\mathtt{C}}$ Primary AC current, max. peak value 1) $I_{PM}(A)$ 2000 2500 2000 2500 3000 Output voltage (Analog) $V_{\text{out}}(VDC)$ 0-10 0-10 0-10 0-10 0-10 > 10 35 < 14 30000 +20 ... 50 Type AHR 500 B10 AHR 800 B10 AHR 1000 B10 AHR 1500 B10 AHR 2000 B10 kΩ mΑ V Α V DC # $I_{PN} = 500...2000 A$ ### **Features** - DC + distorted AC waveform currents measurement - True RMS output - Busbar or panel mounting - Split core type - Insulating plastic case recognized according to UL 94-V0. ### **Advantages** - High insulation between primary and secondary circuits - Eliminates insertion loss - · Easy installation. ### **Applications** - AC power supplies or Motors True RMS current sensing - the most accurate way to monitor power supply or motor input power - VFD Controlled Loads VFD output current monitoring to indicate how the motor and attached load are operating. - SCRs or Swith-mode Rectifiers Accurate measurement of output - Renewable Energy Installations or Backup Batteries Continuous condition minitoring allowing automatic failure detection/ anticipation. ### **Application domain** Energy solutions. ## $I_{\rm C}$ $V_{\rm SL}$ Overload capability Accuracy - Dynamic performance data 2) | X ε_{L} V_{OE} | Accuracy @ I_{PN} , T_A = 25 °C (exclinearity error (1 % of I_{PN} $\pm I_{PN}$ Electrical offset voltage @ T_A = 2 | ۷) | | % of I_{PN}
% of I_{PN}
mV | |--------------------------------|---|---------------|---------------|--------------------------------------| | TCV _{OE} | Temperature coefficient of V_{OE} | 0 °C +60 °C | ±2.0 | mV/K | | TCV_{out} | Temperature coefficient of V (%) | -40 °C +70 °C | ±4.0
±0.15 | mV/K
%/K | | $t_{\rm r}$ out | Temperature coefficient of V_{out} (% of reading)
Step response time to 90 % of I_{PN} | | < 150 | ms | | BW | Frequency bandwidth (±1 dB) | | DC 20 600 | 00 Hz | ### General data | °C | |----| | °C | | g | | | | | | • | - ¹⁾ The max peak AC current is the highest peak level of primary signal that is taken into account for accurate true RMS calculation. Yet the device is designed for maximum continuous true RMS value equal to $I_{_{\mathrm{PN}}}$, whereas the output is limited by the above specified output limitation. - 2) WARNING: The specified characteristics of the transducer are only guaranteed if the paired top and bottom parts are mounted together and not mixed with similar parts of other transducers. - 3) Regarding compliance towards IEC 61000-4-6 (EN 61000-6-2 (2005)): Variation of the offset between 150 kHz and 80 kHz with 10 V AM 80% @ 1 kHz. ### **Current Transducer AHR B10** | Insulation coordination | | | | | |-----------------------------------|--|------|----|--| | U_{d} | RMS voltage for AC insulation test 1), 50 Hz, 1min | 5.8 | kV | | | | Creepage distance | 11.9 | mm | | | $d_{ extsf{Cp}} \ d_{ extsf{Cl}}$ | Clearance | 11.9 | mm | | | CTI | Comparative tracking index (group IIIa) | 225 | | | Note: 1) Between primary (completely filling the aperture) and secondary. ### **Applications examples** According to EN 50178 and IEC 61010-1 standards and following conditions: - Over voltage category OV 3 - Pollution degree PD2 - Non-uniform field | | EN 50178 | IEC 61010-1 | |--|--------------------------|-----------------| | $d_{\mathrm{Cp}},d_{\mathrm{Cl}},\hat{U}_{\mathrm{W}}$ | Rated insulation voltage | Nominal voltage | | Basic insulation | 1000 V | 1000 V | | Reinforced insulation | 500 V | 500 V | ### **Safety** This transducer must be used in limited-energy secondary circuits according to IEC 61010-1. This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions. Caution, risk of electrical shock. When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply). Ignoring this warning can lead to injury and/or cause serious damage. This transducer is a build-in device, whose conducting parts must be inaccessible after installation. A protective housing or additional shield could be used. Main supply must be able to be disconnected. ### **Dimensions AHR B10** (in mm) ### **Mechanical characteristics** General tolerance ±1.0 mm Primary aperture 104 × 40 mm Mounting Busbar fastening 1 hole \varnothing 5.5 mm & 2 slots 5.5 × 30 mm Panel mounting 4 holes \varnothing 3.2 mm Distance between hole axes 15 × 150 mm For panel mounting, use M4 screws (not supplied) with appropriate length to panel's thickness, and tighten to $0.8 \text{ N} \cdot \text{m} + /-20 \%$ torque. ### **Remarks** - The return busbar and primary conductor elbow must be located at a minimum distance of 2.5 × the window length away from the transducer case. - Temperature of the primary conductor can not exceed 90 °C. - Installation of the transducer must be done unless otherwise specified on the datasheet, according to LEM Transducer Generic Mounting Rules. Please refer to LEM document N°ANE120504 available on our Web site: **Products/Product Documentation.** - Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole. - This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us. ### **Transfer characteristics**