
Current Transducer LT 200-S

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

$I_{PN} = 200 A$

Electrical data

I _{PN} I _P	Primary nominal r.m.s. current Primary current, measuring range		200 0 ± 300		A A
$R_{\scriptscriptstyle M}$	Measuring resistance		$R_{_{ m Mmin}}$	$\mathbf{R}_{_{\mathrm{M}\mathrm{max}}}$	
	with ± 12 V	$@ \pm 200 A_{max}$	0	65	Ω
		@ ± 300 A max	0	30	Ω
	with ± 18 V	@ ± 200 A _{max}	50	120	Ω
		@ $\pm 300 A_{max}$	50	65	Ω
$I_{_{\mathrm{SN}}}$	Secondary nominal r.m.s. current		100		mΑ
K _N	Conversion ratio		1:2000)	
V _c	Supply voltage (± 5 %)		± 12	18	V
I _c	Current consumption		28 (@±1	8V)+ I s	mΑ
V _d	R.m.s. voltage for AC isol	ation test, 50 Hz, 1 mn	6	· ·	kV

Accuracy - Dynamic performance data

X _G	Overall accuracy @ $I_{PN_{,}} T_{A} = 25^{\circ}C$ Linearity	± 0.5 < 0.1		% %
I _о I _{от}	Offset current @ $I_P = 0$, $T_A = 25$ °C Thermal drift of I_O 0°C + 70°C	Typ ± 0.3	Max ± 0.3 ± 0.5	mA mA
t _r di/dt f	Response time 1) @ 90 % of I _{PN} di/dt accurately followed Frequency bandwidth (-1dB)	< 1 > 50 DC 1	50	μs A/μs kHz

General data

$T_{_{\rm A}}$	Ambient operating temperature	0 + 70	°C
T _s	Ambient storage temperature	- 25 + 85	°C
\mathbf{R}_{s}	Secondary coil resistance @ T _A = 70°C	35	Ω
m	Mass	200	g
	Standards	EN 50178	

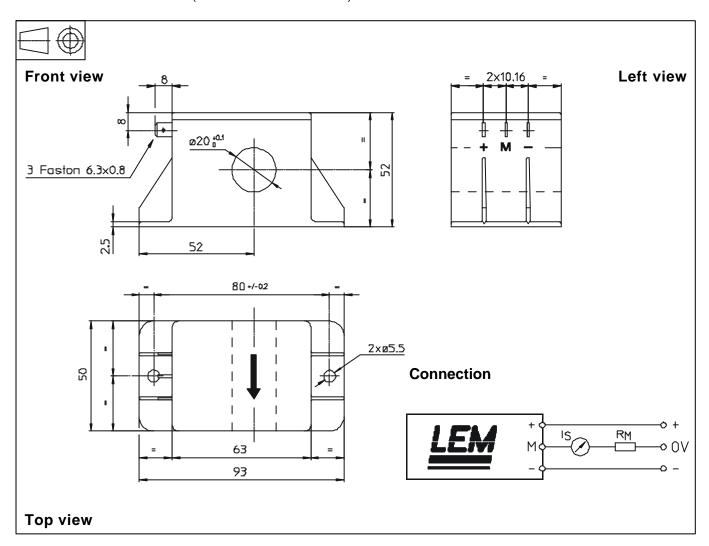
Features

- Closed loop (compensated) current transducer using the Hall effect
- Transducer with insulated plastic case recognized according to UL 94-V0.

Advantages

- Excellent accuracy
- · Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications


- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Note: 1) With di/dt at 100 A/µs.

030204/5

Dimensions LT 200-S (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Transducer fastening

Fastening torque max

- Primary through-hole
- Connection of secondary
- \pm 0.3 mm 2 holes \varnothing 5.5 mm 2 M5 steel screws 3.8Nm or 2.8 Lb.-Ft. \varnothing 20 mm Faston 6.3 x 0.8 mm

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.