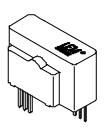


Current Transducer LAH 100-P/SP3

For the electronic measurement of currents: DC, AC, pulsed ..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

EI	ectrical data				
I _{PN}	Primary nominal r.m.s. current				Α
I _P	Primary current, measuring range ¹⁾		0±200	0	Α
\mathbf{R}_{M}	Measuringresistance		$\mathbf{R}_{M\ min}$	$\mathbf{R}_{\mathrm{M\ max}}$	
	with $\pm 15 \text{ V}$	@ ± 100 A _{max}	10	120	Ω
		@ ± 200 A max	10	15	Ω
I_{SN}	Secondary nominal r.m.s. current		66.6		m A
$\mathbf{K}_{_{\mathrm{N}}}$	Conversion ratio		1:1500	١	
V _c	Supply voltage (± 5 %)				V
	Current consumption				mΑ
I _C	R.m.s. voltage for AC isolation test, 50/60 Hz, 1 mn				kV
V	R.m.s. voltage for partial discharge extinction @ 10 pC				kV
V V w	Impulse withstand voltage	1.2/50 µs	> 12		k۷


Ac	Accuracy - Dynamic performance data						
X	Accuracy ²⁾ @ I_{PN} $T_A = 25$ °C	± 0.25		%			
$\mathbf{e}_{\!\scriptscriptstyle L}$	Linearity	< 0.15		%			
		Тур	Max				
Io	Offset current @ T _A = 25°C		± 0.2	m A			
I _{OM}	Residual current @ $I_p = 0$, after an overload of 5 x I_{pN}	± 0.10	± 0.2	m A			
I _{OT}	Thermal drift of I_0 - 25°C + 70°C	± 0.15	± 0.5	m A			
t ra	Reaction time @ 10 % of I _{PN}	< 200		ns			
t,	Response time 3) @ 90 % of I _{PN}	< 500		ns			
di/dt	di/dt accurately followed	> 200		Aμs			
f	Frequency bandwidth (- 1 dB)	DC 2	200	kHz			

General data				
$T_{\scriptscriptstyle \Delta}$	Ambient operating temperature	- 25 + 70	°C	
T _s	Ambient storage temperature	- 40 + 90	°C	
\mathbf{R}_{s}	Secondary coil resistance @ T _A = 70°C	70	Ω	
Ü	Insulating material group	I		
m	Mass	24	g	
	Standards 4)	EN 50178		

Notes: 1) For 10 s, with $R_M \le 15 \Omega$ ($V_C = \pm 15 V$)

- Without I_O & I_{OM}
 With a di/dt of 100 A/µs
- ⁴⁾ A list of corresponding tests is available.

$I_{PN} = 100 \text{ A}$

Features

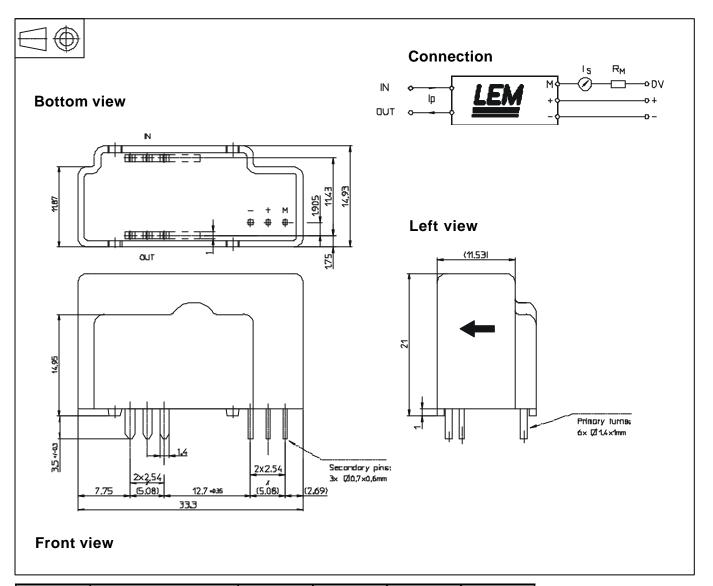
- Closed loop (compensated) current transducer using the Hall effect
- · Printed circuit board mounting
- Insulated plastic case recognized according to UL 94-V0.

Special features

- $I_p = 0.. \pm 200 \text{ A}$
- $\mathbf{K}_{N} = 1:1500$
- $V_{c} = \pm 15 (\pm 5 \%) V$
- $T_A = -25^{\circ}C.. + 70^{\circ}C.$

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- · High immunity to external interference
- · Current overload capability.


Applications

- AC variable speed drives and servo motor drives
- · Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- · Power supplies for welding applications.

021202/4

Dimensions LAH 100-P/SP3 (in mm. 1 mm = 0.0394 inch)

Number of	Primary current		Nominal output current	Turns ratio	Primary resistance	Primary insertion inductance	
primary turns	Nominal	Maximum	04.101.1				
	I _{PN} [A]	I _P [A]	I _{SN} [mA]	K _N	$R_{_{P}}$ [m Ω]	L _P [µH]	
1	100	200	66.6	1:1500	0.08	0.007	

Mechanical characteristics

• General tolerance

 Fastening & connection of primary Recommended PCB hole

• Fastening & connection of secondary Recommended PCB hole ± 0.2 mm

6 pins 1.4 x 1 mm

2 mm

3 pins $0.7 \times 0.6 \text{ mm}$

1.2 mm

Remarks

- I_s is positive when I_p flows from terminals "IN" to terminals "OUT"
- The jumper temperature and PCB should not exceed 100°C.