

Current Transducer HAX 3000 .. 5000-S

For the electronic measurement of currents: DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

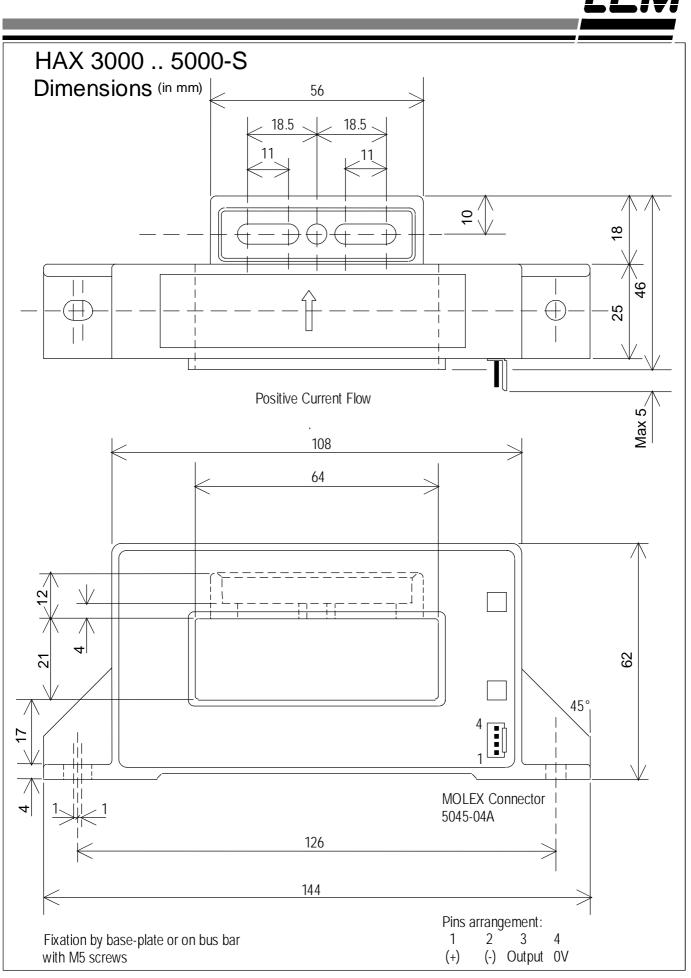
Electrical data						
Primary nomina r.m.s. current I _{PN} (A)	al Primary current measuring range I _P (A)	Тур	e			
3000	± 6000		3000-S			
4000 5000	± 6000 ± 6200		4000-S 5000-S			
V _c	Supply voltage (± 5 %)			±15	V	
I,	Current consumption			±15	mΑ	
l _{oc}	Overload capacity			30,000	At	
I _c I _{oc} V _d	R.m.s. voltage for AC isolation	n test,	50/60 Hz, 1 mn	5	kV	
V _b	R.m.s. rated voltage, safe sep	oaratio	on	500 ¹⁾	V	
R _{is}	Isolation resistance @ 500 VI	DC		> 1000	MΩ	
V _{out}	Output voltage @ $\pm I_{PN}$, R ₁ = 10	0 kΩ,	T ₄ = 25°C	±4V ±40	mV	
R _{out}	Output internal resistance		approx.	100	Ω	
R	Load resistance			> 1	kΩ	

Ac	curacy - Dynamic performance data						
х	Accuracy @ I_{PN} , $T_{A} = 25^{\circ}C$ (without offset)		< ±1	%			
e	Linearity ²⁾ $(0 \dots \pm I_{PN})$		< ±1 (% of I _{PN}			
V _{OE}	Electrical offset voltage, $\mathbf{T}_{A} = 25^{\circ}\mathrm{C}$		< ±20	mΫ			
V _{OH}	Hysteresis offset voltage $\hat{\mathbf{Q}} \mathbf{I}_{p} = 0;$						
	after an excursion of 1 x I_{PN}		< ±30	mV			
V _{ot}	Thermal drift of V_{OF}		< ±1	mV/K			
тč e	Thermal drift of the gain (% of reading)		< ±0.1	%/K			
t, Ŭ	Response time @ 90% of I		< 5	μs			
di/dt	di/dt accurately followed		> 50	A/μs			
f	Frequency bandwidth (03 dB)		DC 25	kHz			
General data							
T _A	Ambient operating temperature		-10 +8	0 °C			
T _s	Ambient storage temperature		-25 +8	5 °C			
m	Mass	approx.	450	g			
	Standards	-	EN 5017	78			

 $I_{PN} = 3000 .. 5000 A$ $V_{out} = \pm 4 V$

- Hall effect measuring principle
- Galvanic isolation between primary and secondary circuit
- Isolation voltage 5000 V~
- Low power consumption
- Extended measuring range $(3 \times I_{PN})$
- Package in PBT meets UL 94-V0

Advantages


- Easy mounting
- Small size and space savings
- Only one design for wide current ratings range
- High immunity against external interference

Applications

- AC motor speed control
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Power supplies for welding, cable TV and telecommunication applications.

Notes : 1) Pollution class 2, overvoltage category III

²⁾ Linearity data exclude the electrical offset.

LEM reserves the right to change limits and dimensions.