

Voltage Transducer LV 25-600/SP7

For the electronic measurement of voltages: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit).

$V_{PN} = 600 \text{ V}$

Electrical data

$egin{array}{c} oldsymbol{V}_{PN} \ oldsymbol{V}_{P} \ oldsymbol{I}_{PN} \ oldsymbol{R}_{M} \end{array}$	Primary nominal r.m.s. voltage Primary voltage, measuring range Primary nominal r.m.s. current Measuring resistance		600 0 \pm 9 5 $\mathbf{R}_{M \text{ min}}$	00 R _{M max}	V V m A
IVI	with ± 12 V	@ ±600 V	30	200	Ω
		@ ± 900 V _{max}	30	100	Ω
	with ± 15 V	@ ± 600 V max	100	320	Ω
		$@ \pm 900 \text{ V}_{max}$	100	180	Ω
I_{SN}	Secondary nominal r.m.s. current		25		mA
K _N	Conversion ratio		600~V/25~m~A		
V _C	Supply voltage (± 5 %)		± 12 15		V
I _C	Current consumption		5 (@±1	5V)+ I _S	m A
$\dot{\mathbf{V}}_{d}$	R.m.s. voltage for AC isolation test ¹⁾ , 50 Hz, 1 mn		4.1		k۷

Accuracy - Dynamic performance data

$\overset{\boldsymbol{x}}{\boldsymbol{e}}_{_{L}}^{_{G}}$	Overall Accuracy @ $\mathbf{V}_{PN,}$ $\mathbf{T}_{A} = 25$ °C Linearity error		± 0.8 < 0.2		% %
I _O	Offset current @ $I_p = 0$, $T_A = 25$ °C Thermal drift of I_O	- 25°C + 25°C +25°C + 70°C	Typ ± 0.10 ± 0.10	Max ± 0.15 ± 0.60 ± 0.35	m A m A m A
$\mathbf{t}_{_{\mathrm{r}}}$	Response time @ 90 % of $\mathbf{V}_{_{\mathrm{PN}}}$		15		μs

General data

T_A	Ambient operating temperature	- 25 + 70	°C	
T _s	Ambient storage temperature	- 40 + 85	°C	
N	Turns ratio	5000:1000		
Р	Total primary power loss	3	W	
$R_{_1}$	Primary resistance @ T _A = 25°C	120	$k\Omega$	
R _s	Secondary coil resistance @ T _A = 70°C	110	Ω	
m	Mass	385	g	
	Standards	EN 50155 (95.1	EN 50155(95.11.01)	

Note: 1) Between primary and secondary.

Features

- Closed loop (compensated) voltage transducer using the Hall effect
- Transducer with insulated plastic case recognized according to UL 94-V0

Special features

- $V_c = \pm 12 ... 15 (\pm 5 \%) V$
- LV 25 series transducer housed in LV 100 case
- Potted
- · Railway equipment.

Advantages

- Excellent accuracy
- Very good linearity
- · Low thermal drift
- High immunity to external interference.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Uninterruptible Power Supplies (UPS)
- Power supplies for welding applications.

031003/0

Dimensions LV 25-600/SP7 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance

• Transducer fastening

Recommended fastening torque

Connection of primary
 Recommended fastening torque

• Connection of secondary

 $\pm 0.3 \, \text{mm}$

2 holes \varnothing 6.5 mm

2 M6 steelscrews

5 Nm or 3.68 Lb.-Ft.

M5 screw terminals 2.2 Nm or 1.62 Lb.-Ft.

M5 terminals

Remarks

- I_s is positive when V_p is applied on terminal +HT.
- The primary circuit of the transducer must be linked to the connections where the voltage has to be measured.